Prototyping for Tiny Fingers
Rettig, Marc
Communications of the ACM (April 1994)

Abstract: The technique of building user interface prototypes on paper and testing them
with red users is cdled low-fiddity (lo-fi) prototyping. Lo-fi prototyping is a smple and
effective tool that has falled to come into generd use in the software community. Peper
prototyping is potentialy a breskthrough idea for organizations that have never tried it,
gnce it dlows developers to demondrate the behavior of an inteface very ealy in
development, and test designs with red usars If qudity is partidly a function of the

number of iterations and refinements a design undergoes before it enters the market, lo-fi

prototyping is a technique that can dramaticdly increase qudity. It is fadt, it brings results
ealy in devdopment, and it dlows a team to try far more ideas then they could with

high-fiddlity prototypes. The steps for building a lofi prototype include 1. Assemble a
kit. 2. Set a deadline. 3. Congtruct models, not illugtrations. Steps for preparing for and

conducting a test of the prototype are dso discussed.

INTRODUCTION

Condder this familiar dtudtion: a deveopment team gpends weeks desgning an
interface. They draw sketches on the board, discuss each point in detal, and findly
oecify a dedgn. The design is ether coded into the application language or smulated
with a software prototyping tool. The result is finadly shown to users for gpprovd, in a
session that generates scores of comments on subjects ranging from the basic metaphor to
the choice of background color. The team just bardly has time to incorporate these
comments into a revised desgn before committing their work to production.

Now congder a different dtuation, one | have witnessed fird-hand over the past few
months. a development team spends weeks desgning an interface. During the first few
days, they condruct a paper prototype of their initid thinking about al aspects of the
desgn, and test it with typica representatives of the user community. One of them “plays
computer,” moving components of the paper interface around on the table in response to
the users actions. The others observe and take notes. After the tests they take a week to
digtill lessons from their observations, redesign the interface, and retest with severd new
usars. This process continues until, a the end of the time dlotted for interface design, the
team has revised their design four times and tested it with many typica users.

This technique--building prototypes on paper and testing them with red users-is cdled
low-fiddity prototyping or “lofi” for <hort. The vaue of prototyping is widdy
recognized, but as the firg dtuation exemplifies, that value is not dways ganed in
practice. If that has been your experience, you might want to try lo-fi prototyping which
requires little more in the way of implementation skills than the ones you learned in
kindergarten.

The idea of lo-fi prototyping (ak.a “paper prototypes’) has been around a long time. So
long, in fact, that more than one person in the CHI community expressed surprise when |
sad | was planing to write a column on the subject. But | see this as a wonderfully
ample and effective tool tha has somehow faled to come into generd use in the
software community. | say this based on the success of the teams I've watched over the
past severd months together with the fact that this is the firs commercid project where

I’ve seen paper prototypes employed.

Paper prototyping is potentidly a breskthrough idea for organizations that have never
tried it, dnce it dlows you to demondrate the behavior of an interface very ealy in
development, and test desgns with red users. If qudity is partidly a function of the
number of iterations and refinements a design undergoes before it hits the dreet, lo-fi
prototyping is a technique that can dramaticdly increase qudity. It is fadt, it brings results
early in development (when it is relaively chesp to make changes), and dlows a team to
try far more ideas than they could with high-fiddity prototypes. Lo-fi prototyping helps
you apply Fudd's first law of creativity: “To get a good idea, get lots of idess”

THE PROBLEMS WITH HI-FI

For years deveopers have used everything from demo-builders to multimedia tools to
high-level languages to build prototypes. Lo-fi proponents call these “hi-fi prototypes”
They have their place: sdling an idea, testing look-and-fed, detailed proof-of-concept,
testing changes to an exiding sysem, and so forth. I'm not suggesting we should stop
building them. But they dso have problems.

« HI-FI PROTOTYPES TAKE TOO LONG TO BUILD AND CHANGE. Even with
high-level tools, a fully functional prototype can take weeks to cregste. | have seen
teams build a complete working lo-fi prototype in four hours. 7he god is to get
through as many iterations as you can during the design phase, because each iteration
means improvement. If testing flushes out problems with the basic metaphor or
control structure in a design, changing the prototype can again take weeks. This is
what Debbie Hix and Rex Hartson, researchers and faculty members & Virginia Tech,
cdl the “Software developer's dilemma” You can't evduate an interaction design
until after it is built, but after building, changes to the desgn are difficult. Paper
prototypes, on the other hand, are extremely fast to develop and the technique is very
easy to learn. It is the fastest of the so-cdled rapid prototyping techniques. To make a
broad generdization, interface designers spend 95% of their time thinking about the
desgn and only 5% thinking about the mechanics of the tool. Software-based tools,
no matter how well executed, reverse this rétio.

REVIEWERS AND TESTERS TEND TO COMMENT ON “FIT AND FINISH”
ISSUES. You ae trying to get feedback on the big things the flow of the
conversation, the general layout of the controls, the terminology, the expressveness
and power of the basic metaphor. With a dick software prototype, you are just as
likey to hear criticisms about your choice of fonts, color combinations, and button

Szes. On the back sde of the same coin, developers easly become obsessed with the
prettiness-power of a good tool, and spend their hours choosing colors instead of
coming up with new idess. In contrast, the hand-made appearance of a paper or
acetate prototype forces users to think about content rather than appearance.

. DEVELOPERS RESIST CHANGES. They are attached to their work because it was
0 had to implement. Spend enough time crafting something and you are likdy to
fdl in love with it. Knowing this, team members may fed reuctant to suggest thet
ther colleague should meke dradgtic changes to the lovely looking, weeks-in-the-
making software prototype. They would be less hestant to suggest redrawing a sketch
that took an hour to create.

. A PROTOTYPE IN SOFTWARE CAN SET EXPECTATIONS THAT WILL BE
HARD TO CHANGE. Prototyping tools let you do wonderful things in a (rdativey)
short time. You can make something that looks like a finished product, fooling testers
and even management into thinking how far you are dong. If it tests wdl, you may
wind up spending time on “reverse damage control,” handling questions about your
sudden lack of progress.

. A SINGLE BUG IN A HI-FI PROTOTYPE CAN BRING A TEST TO A
COMPLETE HALT. To test effectively, your prototype needs to be complete and
robus enough for someone to try to do something useful with it. Even with the
coolet of high-levd tools, building a prototype is 4ill essentidly a programming
exercise-and we al know how hard it can be to get al the bugs out of a program. On
the other hand, | often see teams correcting “bugs’ in a paper prototype while the test
is in progress.

A TROJAN MEME

The spread of lofi design through my current project sarted with a vist from Jared
Spool (with User Interface Enginering in Andover, Mass). He and his associate
presented the basic ideas, then put us to work in four teams to design and build a

prototype of an automated menu for a fast food restaurant. For three hours we discussed,

desgned, sketched and glued, then ran the results in a face-off competition with “red
users’ and a “red task.” That is, we brought people in from esawhere in the building and

told them, “you have $4.92. Order as much food as you can.” The designs were measured
by how quickly and efficiently people could use the interfaces without coaching from the
designers. Between tests, each team had a few minutes to refine their interface.

We were al impressed with the results of the exercise. In about six hours we had learned
the technique, designed an interface and built a mode of it, conducted tests, and
measurably improved the origind design. That was four months ago, and now we have
scores of people working on lofi dedgns, refining them through repeated tests with
actua users. Interface sketches are lying dl over the place, scans are put on the network
for peer review, and terms like “affordance’” and “mental modd” are common parlance.

| cdl this a “Trojan meme" ingead of just a “sdfish meme" because it did more than
reproduce itsdf through the department. (A meme is an idea-the menta equivadent of a
gene, and sdfish ones try to replicate themsaves in as many minds as possble) As it
Spread, it served as a vehicle for spreading a genera gppreciation of the vaue of usability
desgn: deveopers saw firgd-hand the difference in peopl€s reactions to Successve
refinements in thar desgns. Within days of desgning an interface, they saw exactly how
their work was perceived by people just like those who will eventudly be usng ther
product. The vaue of two important laws of interaction design was memorably
demonstrated: “Know Your User,” and “You Aren't Your User.”

Teding for iterative refinement is known in the interface desgn community as “formative
evauation,” meaning you ae evauaing your desgn while it is dill in its formative
dages. resting is used as a kind of natural selection for idess, heping your design evolve
toward a form that will survive in the wilds of the user community. This is in contragt to
“summary evaudtion,” which is done once after the product is complete. With summary
evaduation you find out how well you did, but you find out too late to make substantia
changes.

Lo-fi prototyping works because it effectively educates developers to have a concern for
usability and formative evaduation, and because it maximizes the number of times you get
to refine your desgn before you must commit to code. To make the most of these
advantages, the prototyping effort needs to be carefully planned and followed by
adequate testing and evauation. (It dso helps to have someone who can enthusasticaly
champion the idea)) Hix and Hartson have an excelent chapter on formative evauation in
their book, Developing User Interfaces. If you plan to adopt any of these techniques, |
recommend you read their book.

The rest of this is drawn from our experience over dozens of designs and scores of tests,
notes from Jared Spool’s workshop, and Hix and Hartson’s book.

BUILDING A LO-FI PROTOTYPE

1. ASSEMBLE A KIT.

In this decadent age of too many computers and too few paint brushes, it might be hard to
get dl the maerids you need by rummaging through the supply closst in the copy room.
Make a trip to the office supply store, or better yet, the art supply store, and buy enough
school supplies to excite the creative impulses of your team. Here's a shopping list:

White, unlined, heavy paper that is bigger than letter sze (11 by 17 inches is nice),
and heavy enough to endure the rigors of repeated testing and revision.

« Hundreds of 5-by-8-inch cards. These come in handy as congtruction materia, and
later you'll use them by the score for note taking during tests.

Various adhesives. Tape: clear, colored, double-backed, pin striping tape, whatever.
Glue gticks, and most importantly, Post-It glue-a stick of the kind of glue that’s on

the back of those gticky ydlow notes. Rolls of white correction tape are greet for
button labels and hurriedly written fidd contents.

. Vaious makers-colored pens and pencils, highlighters, fine and thick markers,
pastels.

. Lots of gsticky note pads of various sizes and colors.

. Acdae shegts-the kind you use to make overhead presentations. Hix and Hartson
swear by these as the primary congtruction materiad for lo-fi interfaces.

. See what you find in the architecture section. They have sheets of rub on texture, for
example, which could give you an ingtant shading pettern.

. Scissors, X-acto knives, straight edges, Band-Aids.

Just like kindergartners, lo-fi desgners sometimes find ingpiration in the maerids a
hand. So go ahead--buy that package of colored construction paper. The worst that can
happen is you won't use it. Eventudly your team will develop ther own condruction
methods, and sdttle on a list of essentias for their lo-fi congtruction kit.

2. SET A DEADLINE.

There is a terific temptation to think long and hard about each aspect of the interface
before you con-n-nit anything to paper. How should you arrange the menus? What should
be in a didog box, what should be in menus, and what should be in a tool paette When

you are faced with a blank sheet of paper, these kinds of decisons crowd your thoughts
dl a once. “Wait,” you think, “we haven't thought about this enough!”

That's exactly the point: no matter how hard you think about it, you aren't going to Start
getting it right until you put something in front of actud users and dat refining your idea
based on their experience with your design. So st a deadline. Obligate yoursdf so you
are forced to take a preiminary crack at every important aspect of your problem. If you
know four users are coming tomorrow expecting to work with your prototype, you'll have
far less trouble with fixations on minor detalls You will meke some decison, any
decison, about the most important aspects of your design, and get them down on paper
for teding. Qudity comes through iterative refinement. Get the big things right during lo-
fi, and the little things will folow in future iterations.

3. CONSTRUCT MODELS, NOT ILLUSTRATIONS.

As you build, meke something that will be easy to control for the person playing
computer. Draw a genetic frame (a window frame, if you are building a windowing
interface) on a big piece of heavy stock. Then make each region of the screen on a
different piece of card stock. Anything that moves, changes appearance, or comes and
goes, should probably be on its own piece of stock. Remember you'll eventualy be
playing computer, and you'll need to have a ready response for dmost anything the user
might do while trying to complete the test tasks. Make what you need to smulate menus

dropping down, didogs popping up, sdection highlights, and so forth (see Figure 1).
(Figure 1 omitted)

Making a working model of an interface chalenges you to be creative. Need to represent
a long scralling lig? How about cutting dots in the didog box and running adding
machine paper through it? Want a working tabbed notebook metaphor? Cut up cards or
file folders to make them the right sze, draw the interface components below the tabs,
and stack up the results so the tabs stagger the way you want. Use colored acetate to
represent selection highlighting. Tepe clear acetate handles to things that move around a
lot, s0 you can handle them easily without obgtructing the user’s view.

The photocopier can be a lofi architect's best friend. Make yoursdf lots of blank
windows, didogs, buttons and fidds, in severd dzes. Get a fresh sart by panting white-
out over mistakes, then using the copier to produce a new unsoiled version.

You'll find that different people exced a different aspects of lo-fi condruction: design,
inventing ingenious paper implementations of widgets, producing large amounts of data,
or rendering atigic and dtractive designs. Exploit these tdents and divide the labor
accordingly.

Condruct a first verson completely by hand. Sketch the widgets, hand-letter the |abdls.
Don't even worry about usng a draightedge at firs. Just get the ideas down on paper.
Test smdl detalls on one another, or drag people in from the hal for quick tests of
dternative solutions.

Of course, hand-drawn sketches, no matter how carefully done, may not be appropriate
for some testing Stuations. For example, a customer may be willing to let you test your
design with actud users. They may understand the trandence of the prototype, but you
il want to make a good impresson. You want to look sharp.

Some of the teams on my project have made remarkably attractive paper interfaces using
components created with drawing software, then printed on a laser printer. Some of them
build up a familiar look with dements taken from screen captures. To fadilitate this kind

of thing, they st up a library of lo-fi widget images blank buttons of al szes window

and diadog frames, scroll bars, entry fields, and so on. People print these out, resze them
on the photocopier, and make them part of their sandard lo-fi kit. Or they resize them on
the computer, add labels, and print out a custom part for their work in progress. This is an
example of the kind of preparation that will help lo-fi prototyping become a norma part

of your design process. Preparing a widget library, writing down guiddines, and taking

time to train people will make everyone more enthusiagtic and productive.

PREPARING FOR A TEST

However much care you teke in building your prototype, the tests will be ineffective
unless you prepare well for them. Be sure to attend to the following matters.

1. SELECT YOUR USERS.

Before you start desgning, you should do enough user and task andyds to understand
the people who will be usng your software-their educational and training background,
knowledge of computers, their familiarity with the domain, typicd tasks involved in ther
job, and s0 on. Based on this study, you can look for pools of potentid testers for your
prototype. With a good user profile on hand, you can develop a questionnaire that will
help to choose the best representative users from available candidates.

It would seem reasonable to arrange it so the people testing your prototype are the same
people who will be usng the find product. But bona fide members of the user
community may be hard to corra for the time it takes to run a test, and using them may
not be the best idea in the long run. Be sendtive to the palitical climate. People may fed
threatened by the intruson of a new system into their work (perhaps judtifiably!), or there
may be a competitive Stuation that makes your employer reluctant to expose new ideas
outdde the wdls of your building.

Since you are looking for gppropriate knowledge and skills, not job titles, you can often
get by with “surrogate users’--people who fit the same profile as your actud clients, but
free from whatever association that prevents you from testing with the clients themselves.
I've heard of dl kinds of tricks for attracting people to the test. Spool says he's done
everything from running ads in the newspaper to recruiting universty sudents to
contacting loca user groups. Anything to avoid usng actud customers, employees, or
friends and family. (The later may be accessble, but there are a lot of things about
sharing ties in the same sociad web that can congpire to damage a usability test. For
example, testers who know you or the project may skew the results by trying hard to
please you or do what they think you expect them to do.)

Findly, remember that no two people are the same, and your product’s users may be a
diverse group. Try to recruit testers that represent the whole range of characterigtics in
your target audience. Our practice has been to conduct a least one round of testing in our
office with surrogates, then go to the fidd for testing with the most typica end users we
can find.

2. PREPARE TEST SCENARIOS.

Write a set of scenarios, preferably drawn from task andyss, describing the product
during use in a typica work gStuation. Design your prototype to support a few of these
scenarios, narrowing the scope of your efforts to a reasonably small set of functions, but
broad enough to dlow meaningful tests.

If possble, ak someone to review the scenarios and sample data and tell you whether
they look redidtic. In our experience, people find a lofi interface more engaging--more
redidtic-if it shows data that looks familiar and we ask them to perform redigic tasks.
This helps draw them into the “let’s pretend you're redly usng a computer a your job”

world, which leads to better tests. On the other hand, unredlistic scenarios and data can
sverdy damage the credibility of your design.

3. PRACTICE.

Just as a bug in a software prototype can ruin a test sesson, so can a bug in a lofi

prototype. That bug could be a missng component, a misunderstanding on the part of the
person playing “computer,” or even excessve hestation and confusion because the team
Is unfamiliar with how to conduct a rest. So to avoid embarrassment, conduct severd dry
runs before you test with people from outsde your team. Each team member should be

comfortable with his or her role, and you need to make sure you have the supplies and

equipment needed to gather good information.

CONDUCTING A TEST

We find it takes four people to get the most out of a test sesson (see Figure 2), and that
ther activities fal into four essentid roles (Figure 2 omitted)

. GREETER. Much the same as the usher in a church, the greeter welcomes users and
tries to put them a ease. We have some forms we ask people to fill out--an
experience profile, for example-a job the gregter handles while other team members
are setting up for the test.

. FACILITATOR. Once the test is set up, the facilitator takes the lead, and is the only
team member who is dlowed to spesk fredy during the test. Facilitating means three
things giving the usx indructions, encouraging the user to express his or her
thoughts during the test, and making sure everything gets done on time. This is a
difficult enough job that the facilitator should not be expected to take notes during a
sesson.

. COMPUTER. One team member acts as the “computer.” He or she knows the
goplication logic thoroughly, and sudtains the illuson that the paper prototype
behaves smilar to a red computer (with an unusualy dow response time). A pointing
finger serves as a cursor, and expressions like, “1 type hdf-slvered bicuspidors in
that fidd” subgtitute for keyboard entry. If the user touches a control, the computer
aranges the prototype to smulate the response, taking care not to explain anything
other than the behavior of the interface.

. OBSERVERS. The rest of the team members quietly take notes on 5-by-8-inch index
cards, writing one observation per card. If they think of a recommended solution, they
write it on the same card that records the problem.

Snce dl of these roles can be exhausing, we rotate them among the team when we
conduct more than one session a day (and we very often schedule four sessions in a day).

Typicd test sessons usudly lagt a little over an hour, and go through three phases
getting ready, conducting the test, and debriefing. We begin with greetings, introductions,
refreshments and genera ice-breaking, trying our very best to assure people that the test
is confidentia, the results will remain anonymous, and their supervisor won't hear a word
about whether or not they “got it.” People often say things like, “Am | flunking the test?
Am | getting it right?" To which we answer, “Don’'t worry, the question is whether or not
we are flunking. The interface is on trid, not you. If you fal to understand something or
can't complete one of the tasks, that's a sign of trouble with the design, not a lack of
intelligence on your pat.”

While this is going on, someone postions a video camera (we tape dl the sessons) so it
points down over the user’s shoulder to look a the interface and the hands moving over it.
No on€e' s face ever appears on tape.

During the test, the facilitator hands written tasks to the user one a a time. These must be
very clear and detalled. As the person works on each task, he facilitator tries to dicit the
user’s thoughts without influencing his or her choices “What ae you thinking right
now?" “What questions are on your mind?’ “Are you confused about what you're
seeing!”

While this is going on, the rest of the team members observe and take notes, and may
occasondly interject a question. But they must never laugh, gape, say “aha” nudge one
another, or otherwise display their reaction to what's happening to ther careful design.

This kind of thing can intimidate or humiliate users, ruining the reaionship and spailing
the test. It can be terribly difficult to keep ill while the user spends 10 minutes using dl
the wrong controls for al the wrong reasons. You will fed a compdling urge to explain

the design to your users. Don't give in.

When the hour is over, we spend a lo-minute debriefing sesson asking questions,
gathering impressons, and expressng our thanks.

EVALUATING RESULTS

Lofi or hi-fi, prototyping is worthless unless information is gathered and the product is
refined based on your findings. As | wrote earlier, Hix and Hartson nicedy cover the
detalls of gathering and analyzing test data We spend quite a hit of time (at least a day
per iteration) sorting and prioritizing the note cards we wrote during the test sessons. Our
method involves arranging the paper prototype on a big table, then piling the note cards
next to its rdevant interface component. Then team members divide the labor of going
through the piles to summarize and prioritize the problems.

These sorted piles inform a written report on findings from the test, and form the agenda
of a meeting to discuss recommended changes to the design. The team works through the
piles and agrees on suggested changes, which are written on Pogt-It notes and affixed
directly to the rdevant part of the paper prototype. Constructing the revised prototype

becomes a process of taking each component, and following the recommendetions that
were stuck to it.

TRY IT

Hix, who for years has been teaching courses and workshops in interface design, says that

people consgently enter the fird lofi exercise with skepticism. After trying it they
invariably say something to the extent of, “I can't believe how much we learned from
thid” If this column is the firgt place you have heard about the lo-fi technique, one danger

is that you will set asde this magazine with just enough skepticiam that, however much
interest I’'ve managed to create, you will fal to actudly try it.

Having seen other skeptics converted, I'm confident in recommending this technique. If
you dready have a working high-fiddity prototype, it probably isvt worth abandoning
that course to switch to lofi. But if you ae in the very ealy sages of desgn and
exploring broad quedtions, or if you need to learn more now, lo-fi prototyping is just the
tool to pick up.

RESOURCES

Brown, D. STUDIO: Structured User-Interface Design or Interaction Optimisation. New
York, Prentice Hall, 1994.

Hix D. and Hartson, R. Developing User Interfaces. Ensuring Usability Through Product
and Process. New York: Wiley & Sons,
1993.

Nidsen, J Finding usability problems through heurisic evdudion. In Proceedings of
SIGCHI Conference on Human Fectors in
Computing Systems. ACM, New York, 1992, pp. 373-380.

Rudd, J. and Isenee, S. Twenty-two tips for a happier, hedthier prototype. Interac. 1, 1
(Jan. 1994), 35-40.

Marc Rettig is a senior architect at Andersen Consulting in Chicago. He can be reached at
76703.1037compuserve.com, or 100 S.
Wacker, Chicago, IL, 60606.

/0

